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1. INTRODUCTION

Let X be a normed linear space of complex-valued functions defined on
E c R m

, with norm denoted by 11·llx' We shall assume that there exists
ho >°and w: X X [0, hol -+ [0, 00) with the following properties:

W(/I +12' h) ~ w(/1 , h) + W(/2' h),

w(j, h) ~ 211/11x.

(1.1 )

(1.2)

In particular cases w will be a modulus of continuity and hence we shall use
this terminology in general.

Suppose that X admits an increasing dense sequence {Sn} of linear
subspaces satisfying the following Bernstein-type inequality; there exist
positive constants A, A such that for each nand s" E Sn'

w(Sll' h) :< AnAllsn Ilx h (1.3)

for all hE [0, ho]. Examples of such spaces will be given in Section 3.
For IE X choose a sequence {sn}' where Sn E Sn' such that lim ll --oOO

III- snllx = O. It is the purpose of this paper to discuss the modulus of
continuity of the remainder rn =1- Sn' n = 1, 2,.... This problem has been
considered previously in some special cases (see Section 3), but not in the
generality given here. OUf principal result is presented in the next section,
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giving an estimate for w(rn' h). It is also shown that this estimate cannot be
improved (see Section 3.1).

2. AN UPPER BOUND FOR w(rn , h)

For the spaces X, Sn satisfying the conditions given in the Introduction we
have the following theorem.

THEOREM 1. Let fE X, sn E Sn and suppose there is a sequence {u(n)},
where Ilrnllx=llf-snllx::;;;u(n) for n= 1,2,..., satisfying the following
property; there exist M > 1, fJ E (0, 1) and no such that for all n ~ no and
k= 1,2,... ,

(2.1 )

Then, for 0::;;; h::;;; ho,

(2.2)

where B is independent of both nand h.

Proof Choose n ~ no' From (2.1) it follows that limk~oo u(Mkn) = 0, so
that limk~oo Ilf- sMknllx = O. If, for k = 1,2,..., we define

(2.3)

then we can write

00

rn=f-sn= L tk.n·
k='

From (2.3), (2.1),

II tk.nll x ::;;; Ilf - sMkn Ilx + Ilf- sMHnllx

::;;; u(Mkn) +u(Mk-'n)

::;;; (1 + MMj) M- kA l3u(n).

For any non-negative integer v we write

v 00

rn= L tk.n+ L tk.n=R,+R 2
k=' k~v+'

(2.4)

say, where we define R, to be zero if v = O. We shall estimate the modulus of
continuity of each of these sums.
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Since tk •n E SMkn we have, using (Ll) and (1.3),

v v

w(Rl'h)~ ~ w(tk.n,h)~Ah \' (Mkn)Alltk.nll x·
k=l k=1

Applying (2.4) gives

v

w(R I' h) ~ AhnA(1 +MAil) u(n) \' M kAO -Ill

k=l
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(2.5)

where we have made use of the conditions M > 1 and f3 < 1. Now assume
that 0 < h ~ n- A

, and choose v such that

(2.6)

Then, from (2.5) and (2.6), we obtain

w(R I' h) ~ {AMA(1 +M-AIl)/ (MW -Ill - I)} nAllu(n) hll. (2.7)

To estimate w(R 2 , h) we use (1.2) to obtain

00

W(R2,h)~21IR21Ix~2 I Iltk.nllx·
k=v+l

Then, as for the previous estimate, (2.4) gives

00

w(R 2, h) ~ 2(1 + MAil) u(n) 2: M-kAll
k= v+ I

where we have made use of the conditions M > 1 and f3 > O. It follows from
(2.6) that

Combining (2.7) and (2.8) we have that for all h ~ n- A
,

w(rn' h) ~ BnAllu(n) hll,

where
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To complete the proof it remains only to consider those values of h for
which h > n- A

• Again from (1.2) and (2.4),

00

w(rn,h)~2 L Iltk,nllx
k=l

~ 2(1 + MAil) u(n)/(MAIl- 1)

~ {2( 1 +MAIl)/(MAIl - I)} nAllu(n) hll

~ BnAllu(n) hll .

Thus the theorem is established with B defined by (2.9).
Of particular importance is the set of those functions in X satisfying a

Lipschitz condition. We say that fE X satisfies a Lipschitz condition of
order a, a > 0, if there exist M >°and °< h' ~ ho such that w(f, h) ~ Mhl>
for all h ~ h'. In this case the infimum of all such M is called the Lipschitz
constant ofI, and the set of all such functions will be denoted by Lip(X; a).
As an immediate corollary to Theorem 1 we have

COROLLARY 1. Under the conditions of Theorem l,f and the remainders
rn belong to Lip(X; fJ).

Proof From (2.2) we see that rno E Lip(X; fJ), and since sno E Lip(X; 1) c
Lip(X;fJ) by (1.3), it follows thatf=sno+rnoELip(X;fJ). Now use the
equality rn=f - sn to deduce that rnE Lip(X;fJ) for all n = 1,2,....

From (1.3) we see that, although Sn E Lip(X; 1), the coefficient of h
depends upon n and, in general, this will be unbounded as n --+ 00. However,
by imposing a suitable smoothness condition on I, together with a certain
rate of convergence on {u(n)}, we can deduce that sn E Lip(X; 0') for some
0' E (0, 1), where the Lipschitz constants of the sn are uniformly bounded.

COROLLARY 2. Let fE Lip(X; p) for some p E (0, 1) and suppose there
exist {sn}' K> °and 0< v < AP such that u(n) = Kn- V for all n = 1,2,....
Writing 0' = min (ViA, p) we have

(2.10)

where C is independent of both nand h.

Proof In the notation of Theorem 1 choose f3 = viA; then f3 E (0, 1), (2.1)
is trivially satisfied and, from (2.2), w(rn' h) ~ BKh v

/
A, where BK is

independent of both nand h. Now sn =1- rn and, using (1.1), the result
follows.
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3. SOME ApPLICATIONS
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We shall consider three important applications of Theorem 1. Our first
example also shows that, except for the constant B, inequality (2.2) cannot
be improved.

3.1. Uniform Approximation by Trigonometric Polynomials

Take m = 1, E = (-00,00) and X = Cz,., the space of continuous 2n­
periodic functions with the uniform norm (11·lla:J The modulus of continuity
of IECz,. is given by w(f,h)=sup{llruf-Jllro:lul~h},where ruf:x-+
I(x + u) is just the u-translate off For each n, Sn will be the subspace of
Cz,. spanned by {I, cos x,... , cos nx; sin x,... , sin nx}, so that each sn E Sn will
be a trigonometric polynomial of degree at most n. Now Bernstein's
inequality (see [5, Theorem 47]) states that Ils~llro ~ n Ilsnllro' from which it
follows that

(3.1 )

on comparison with (1.3) we have A = 1 and A= 1.
Now let En(f) = min{111- snllro: sn E Sn} denote the best approximation

to I by members of Sn. If we choose u(n) = Kn- /3 then (2.1) is satisfied (for
any M> 1) and (2.2) and Corollary 1 give that IE Lip(C2,,;P). Thus we
have that En(f) = O(n-/3) implies that IE Lip(Cz" ;,8), which is a theorem
due to S. N. Bernstein (see [5, Theorem 48]). Furthermore Jackson's
theorem (see [5, Theorem 38]) shows that the exponent ,8 of h cannot be
improved (that is, increased). Similar results hold with C2" replaced by Lf",
the space of pth integrable 2n-periodic functions with the usual norm.

There is also the question as to whether the exponent ,1.,8 of n in (2.2) can
be decreased. We show that it cannot by considering the following example
in Cz". Suppose we have w(rn, h) ~ CnYu(n) h/3 for some y> 0, where C is
independent of both nand h. By a result of G. G. Lorentz (see [4,
Theorem 6]) the function I given by

ro
I(x)= \' 2-k/3cos(2kx)

k~l

(3.2)

belongs to Lip(Cz,,; ,8), where °<,8 < 1. For n satisfying 2m- 1 ~ n < 2m

write sn(x) = 'L'!:::/ 2-k/3 cos(2kx). Then rn(x) = 'Lf'=m 2-k/3 cos(2kx) and

ro
Ilrnllro = L 2- k /3 = 2-(m-I)/{j/(2/3 - 1).

k=m

640/31/15
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Thus we may choose u(n) = 2/ln-/l/(2/l - 1) and (2.1) will be satisfied for
any M> 1. Now for m = 1,2,... we have

OCJ

2-m/l(1-cos2)~ L 2-k/l(1-cos2k- m+ l
)

k=m

= rzm~l(O) - rzm -,(2 -m + 1)

~ w(rZm-l, 2-m+ I)

~ C2(m-I) Y2 -(zm-3)f}/(2/l - 1),

from which it follows that

1 - cos 2 ~ {C2 3/l- Y/(2/l - I)} 2m(Y-Ill.

For this to hold for m = 1,2,... we must have y ~fJ, thus showing that the
exponent of n in (2.2) is best possible.

3.2. Uniform Approximation by Algebraic Polynomials

Take m= 1, E= [-1, 1] and X=C([-I, 1]), the space of continuous
functions on [-1, 1] with the uniform norm. The modulus of continuity of
!EC([-I,I]) is given by w(f,h)=sup{I!(x1)-!(xz)l:xl'x2 E [-1, 1],
Ix I - xzl ~ h}. For each n, Sn will be the space of all algebraic polynomials
of degree at most n. It follows from an inequality of A. A. Markov (see [5,
Section 5.7.3]) that

(3.3)

on comparison with (1.3) we have A = 1 and A= 2. Now choose! with rth
derivative belonging to Lip(C([-I, 1]); a) for some a E (0, 1], and for each
n let Pn denote the polynomial of degree at most n that best approximates!
uniformly on [-1,1]. By a result ofD. Jackson (see [5, Theorem 45]),

where A> °is independent of n. Taking u(n) =An-r-a: we see that (2.1) is
satisfied for all M> 1, provided we choose 0 < 2fJ < min(r + a, 2). Then,
applying (2.2),

(3.4 )

This result, in the case when r = 0, has previously been obtained by
Kalandiya [3]. Kalandiya's lemma has been used [1] to prove convergence
of quadrature rules for some Cauchy principal value integrals, and (3.4)
could be useful in estimating the corresponding rates of convergence.
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It is of some interest to apply Corollary 2 in this context. If we approx­
imate to f E Lip(C( [-1, l]),.u), 0 <.u < 1, by the sequence of its Bernstein
polynomials Bn(f) then, by Popoviciu's theorem (see, for example, [5,
Section5.??]), we can take u(n)=Kn- w2 so that a=.u/4 and, from (2.10),
we have

(3.5)

In the particular case when .u = 1, a direct argument based on properties of
the Bernstein polynomials shows that w(Bn(f), h) ,,;;; Ch, where C is
independent of n. It is not known whether the exponent of h in (3.5) can be
improved.

Finally, by applying an argument similar to that in Section 3.1, to the
function f(X)='L.'t'=12- 2kIJT2k(X), where O<fJ<l and T 2k(X)=
cos(2k arcos x), it can again be shown that the exponent of n in (2.2), which
in this case is 2fJ, cannot be reduced. This result was overlooked by
Kalandiya.

3.3. Linear Spline Approximation

As in Section 3.1 take m = 1, E = (-00,00) and X = C2", but let Sn be
the space of continuous 2n-periodic functions that are linear on each interval
[2(k - 1)n/n, 2kn/n]; k = 1,2,..., n. Then for each sn E Sn,

(3.6)

on comparison with (1.3) we have A = n- 1 and A. = 1. For fE Lip(Ch ; a),
0< a:::;; 1, let Pn denote the piecewise linear function comprising the straight
line segments connecting the points (2(k - l)n/n,f(2(k - l)n/n)) and
(2kn/n,f(2kn/n)) and extended by periodicity to (-00, (0). Then, since in
each interval (2(k - l)n/n, 2kn/n) we have

rn(x) = (n/2n){(f(x) - f(2kn/n))(x - 2(k - l)n/n)

+ (f(x) - f(2(k - l)n/n))(2kn/n - x)},

it readily foHows that Ilf-Pnlloo";;;An- a
, and from Theorem 1 we have

w(rn , h)";;; Bn-(a-lJlh lJ for 0 < fJ < 1. This result has been used previously by
B. G. Gabdulhaev [2] in the context of finding approximate solutions of
singular integral equations with Hilbert kernel.

Note added in proof Using the K-method in the theory of real interpolation it can be
shown that the exponent of h in (3.5) can be taken to be jl. We are grateful to Dr. W.
Dickmeis of Technische Hochschule, Aachen, for pointing this out to us.
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